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INTRODUCTION

Numbers and words are alike in that they are used to describe the
physical world. Further, the more enlightened the user, the greater
the &eiaﬁi and quality of the inforimation he can be given through each
of them. A weatherman can say that it will be partly cloudy tomorrow
with a high of 88° . But to 2 more knowledgeable audience, he may also

say that the clouds will be cumulugs building to 14, 000 ft. with clouwd

cover increasing from .5 to .8 , humidity 78 % and precipitation
probability ‘Z@%, To abtai;n the information represented by the numbers
used in this 4mm:e detailed :3mf£@ment required ability to interpret decimal
fractions, percentages, and some idea of what is meant by probability,
Ir the most furzdia.ménml number situations, the relation of the
number to the physical world is direct. The number 4 can be directly
associated with a physical set of apples. But as the study of number

proceeds to more involved situations, this relation is sometimes pushed

into the background. In learning the basic addition facts, it would be

inefficient for a child to phrase each occurence of each combination in

terms of pennies or apples, Learning to add fractions is involved enough




80 that insisting on a physical interpretation for each fraction gtt each
step would be confusing. Further, emphasis on the inner structure of
rmathematics often suggests explanations based on mathematical laws
rather than explanations based on physical situations, For example,
the fact that % = ’g" can be demonsiratsd mathematically without

recourse to any concrete situation at all by appealing to abstract laws

and definitions:

3 3 g e
r S 1 identity law
. o x (2 «L» inverse law
= 2 ® 5 inverse
3 2 9 * I} [] L4 L] [
= 7 %3 delinition of multiplication
6 b » 4 . L3
= = definition of multiplication

$uch de-emphagis on the real world allows more mathematically
precise treatmment of numbexs, but it algo requires added concern that
the use of numbers be made clear. There is limited value in teaching a
student to divide two fractions if he remnins incapable of recognizing in

what situations such a division can be usad,

MODELS

In learning to use numbers, a child developes certain mental patterns

which allew him to see similarities among concrete situations-and apply




general information already discovered to particular cases, These patterns
have been called variously schema, models, and constructs, We will use
the word '"model” in discussing these patterns which are developed in
learning, since this word is suggestive of the uses made of them in
arithmetie, in spite of the fact that '"'model"” is in current use in several
different contexts, A person may use a model which he holds as a remembered
visual image in order to identify a figure as & square. Students develop a
model for an "unknown" which allows them to think about addition in
situations like 4+ ? = 7, even though they don't know the second addend.

A model is used in various ways, It allows identification. John has 1l ¢,
He spends 4¢, How much has he left?

A student who has 2 working 'take away' model for subtraction will

identify this as a subtraction problem;l 4¢ is being taken aw’vay from

1l ¢, therefore subtraction is the correct procedure. A model can be used
to justify an slgorithm. In the subtraction algorithm, the need for borrowing

is justified using the "take away' model. For example, in

725
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we must borrow in the ten's column bacause 8 tens can'’t be taken away

from 2 tens. A simple model may be used in expldning part of a more

complicated situation. Subtraction is involved in the division algorithm.

1. For briefness, the word 'problem' will be used only to refer to real
world problems, Thus we won't ¢all 1l - 4 = ? a problem. This is only
a convenienca, and does not represent common usage, f
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we subtract to see that when five threes are taken away from 15, it
leaves nothing, Models can be used to back up absiractly stated laws of
arithmetic and to verify and reinforce results obtained through abstract

reagoning. For example, the abstract argument used to prove that

% & %’ can be verified by looking at 3/4 of a circle, and then sub-

dividing the quarters into cights. Now, rather than appealing to precise

3 6 .
mathematical laws to show that ry = 3 we appeal to the imprecise

but perceptual maxim: no matter how you cat it, it's the same pie.

A child chooses from a broad range of patterns as he builds his own
collection of models, He may use a remembered picture or an explanation
given to him by a teacher for some particular éroblemo A teacher's decision
to suggest a particular approach to a problem either to.a group or in giﬂ.ring

individual heip can thus be seen as a crucial one, ]

As we consider learning with attention to the formation of models,
we are lead to inquire about the advantages and disadvantages of various

types of modals. It is useful for a model to be general, that it apply to a

large claas of prqbiemsw But a proposed model can be so general that a
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child will fail to see its application., To tell a third grader '"To solve

this problem, multiply 4 by 3 ,'" helns only with one problem. But

at the other exireme, to tell him, 'In solving problems, always take
into account all possible cages," probably won't help him atall, Even
the most basic models have some bujlt~in difficulties. *'Take away"
will help solve a lot of problems and aid in explaining the subtraction
algorithin, but students need help in seeing why problems which agk
"How many more?'" are ina&naes of '"take away', and it is hard to
justiﬁy ? - (=2) = 1] with this model. A student who accepts the
attitude that all subtraction is ''take away" will meet difficulties in
rationalizing a number of other situations in which subtraction is needed,
But in apite of occasional spots that require special attention, there
are a lisnited number of basic models which can be applied generally

enough to nse them as a hinge on which to swing most arithmetic problems.

Because of the power of thess basic models, it seems worthwhile to examine
(hem carefully, In the following units the grouping model, a very basic — ‘
model for applying multiplication and division, is explored and extended

through various sub-models” as an illustration of the conceptual model

approach to the application of mathematics,
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THE GROUPING MODEL

The fundamental rmodel for multiplication is the grouping model:
to find thé total number of objects in a set of equal groups, multiply
the number of groups by the number in ecach grouvp, Henry has 3 bags
of marbles with 4 marbles in each bag. How many marbles has he ?

There are three numbers in this problem, each with a distinct function:

3 x 4 o ?
number number in total
of groups each group

Whenever a grouping problem in resolved into a2 multiplication sentence,
we will maintain this order, the first factor representing the number of
groups, the second the number in each group. This is in keeping with
the old wording, 3 fours are 12, | /

A teacher who maintains a convention such as this; at least in explane
ations, can avoid some confusion to her students, Finding four three's
that is, solving 4 x 3 =7 will produce the correct answer to the

problemn above, but saying 'four threes'' over the picturé

(@ o Q ) O o
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which is correct, but may canse unexpected difficulty when there are

seven marbles in each of three bags.,

Asg the unorthodox grouping of marbles pictured above suggests,

there is no single proper way to solve a grouping problem, in fact, any

problem that can be resloved into 2 % b = ? canalso be resolved into
b x a = ?. Forillustration, consider the marble problem above, which
seems to be natural for 3 x 4 = 7, Label the bags A, B, and C, and

the marbles with a leiter and 1, 2, 3, and 4 as follows:

EIEs

- @ -~ @

whichisa 4 x 3 = ? grouping.
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There ig also, of course, the diagramatic model
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which can be viewed two ways, eitheras 3 x 4 oras 4 x 3 and

thereby

© © 0 ©

serves as a model for the commutive property which states that for

all whole nurabers a and b , & x b = b x a,

EXERCISES

1, Draw a picture showing a grouping of 3 bags of .7 marbles each

which is described by 7 x 3 ?.

&

2, Explain why the area of a ‘3" by 4" rectangle is 12 square inches

in two different ways, using two different groupings.

3. A deck of cards is dealt into 4 equal hands with 5 cards in each
hand, Explain how this problem can be resolved into both 4 x 5 = ?

and 5 x 4 = ?,
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4, A bozt owner has room to hoist two flags on his mast, If he has

four flags, all different, how many different two flag signals could

he display?

v
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DIAGEAM S SHOWING GROUPING

There are many ways of showing grouping situations, The device chosen

to illusirate a particular problem depends on the nature of the problem,
and on the possible power of the illmstration in analyzing more involved
problems., A few ways of picturing gr ouping are shown and briefly ?

discugsed below.

(1) Proximity grouping

4 ®
X X X %
2 x 3 = ?

This is probably the simplist way of picturing groupings, It can be

extended to grouped groups, to illustrate three factor multiplication,

X X % X

‘ x x X X
% X xx xx % %
X X % X % X ® X

2 x (3 % 4)= ?

(2) The use of boundaries

't e

Boundaries without proximity gronping can be useful in teaching

division as the inverse of multiplication, For axample, in constructing

the figure above, draw all § elements before making the boundaries to

ghow the division ? x 2 = 8, (More on this later.) Grouping
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groups can also be illustrated using differeant kinds of boundaries,

(3) Rectangular arzays

X X X
X X X

2 x 3 = ?

A rectangunlar array, grouped first by rows and then by columns,

illustrates the commutative law for multiplication,

N

"
w
6
L
»
N

o e

(4) Area

lﬂ

- AxH =7

There are 2 strips with 4 square inches in cach sirvip, ]
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(5) Volume / / / /f ,

1"

7
Finding volume is 2n example of grouping groups.

a, Count 4 cubic unite "m.the bottom row of the front stack.
b. There are 2 zuch rows in the front atack, 2 x 4 = ?

¢. There are three such stacks in the whole block,

3 x(2 x &)= ?

(6) Number line

Quantities can be represented by lengths on the number line, with

groups of equal lengih depicted by humpa above the line,

T Number line pictures can also be used in fractional situations

(to be discussed more later).

___{’M: { \/ﬂ: 2 YW ) nV\\ 4
& 1 + 3 2z 85 3 T 4 9 5
2 2 2 2 2

,,,,,,
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CRO85 PRODUCT

Two related groupmg devices, which can be used more easily
in certain abstract promem than those listed above, are described in
this section and in the one fallc;wingg Consider a problem: A spy
kit containg 4 false moustaches and 3 false beards. How many
different disguises can a spy possibly wear, using this kit?

This problem is not quite so directly classed as a grouping model
multiplication as the marble problem in the first section. But we

can see the groupings if we name the varicus moustaches and beards,

moustaches égards
)] a
2 b
3 ¢
4

and group the possibilities by moustaches:

12 22 3a 4a
b lc 2b 2¢ 3b 3¢ éb 4e¢

4 x 3 = ?

In the language of set theory we have formed, in this solution,

the cross product of two sets, {1,2,3,4) and {a,b,c).

Definition: The cross product of two sets is the set of all ordered
pairs that can be formed by choosing the first element of an ordered pair
from the first set and the second element of the pair from the second

set. For example,

if S= {1,2,3,4} and T = {a,b,c}, then
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T = {(,8), (1,b) (L e) (2,2), (2,b) (2,¢€) (3,2), (3,B) (3,c)

(4,2), (4,), (4, ¢)}.

As the grouping argnment used to solve th; problém indicates, the
number of elements in a cross product is the product of the numbers
of elements in the two sets, This can also be seen by arranging the
elements of the cross product in 2 rectangular array:

la 2a 3a 4a

Ib 2b 3b 4b

le 3¢ 3¢ 4c

Why is the grouping pattern easier to see in the marble problem
than in the dimguisé problem ? | One reason is that in the firet case,
we are grouping concrate objects. Even when the symbols, AZ, Bl, -
etc, , are attached to the marbles it seems only a device to aid in

keeping tract of what marble goes into what group, On the other hand

in the disguise problem, we are concerned with possibilities, not

concrete objects., The marble problem can be solved by obiaining 3

bags of 4 marbles sach and «:oﬁmimgg marbles. But resorting to an
actual spy kit does not allow the simulianeous physical formation of

the set of all disguises whick one must count to answer the question,
Attempis to solve the problem this way can lead to at most 3 disguices,
for example 4c¢, Zbo and 3a, and some spare mousiaches. The cross
product solutic;n degcribed abovs ig built on an abstract ‘z‘:et of ordered

pairs, whoze elements represent hypothetical possibilities. By forming

the abstract cress product set, 8 x T, we can think simulianeously




about the elements (2,a) and (3,a) without being concernaed about the

physical impossibility of the simultaneouz existence of the corresponding
disguises,
EXERCISES
1. Solve the marble problem of the first section by forraing two sets
and then considering their cross product,

2, In deciding what to wear, a gir} finds that she can choose from 5

sweaters and 6 skiris. Ignoring color clashes, find how many different
combinations are possible. E}Scplain vour procedure,
3, A man plans to drive from New York to Denver via Chicago. He

dizcovers 3 acceptable routes from New York to Chicago and 4 \

from Chicago to Denver, Inhow many different ways can he make the
trip? Explain,
TRELES

Problems to which an ordered pair (or ordered set of n elemente)

model apply do not always {all nicely into a cross product pattern. The
solution of the following problem illusirates a use of ordered triples
. which is not a triple cross product] Find the number of different 3

flag signals a eailor can run up his mast if he has 4 different flags.,

Name the flags 2, b, ¢, and d. Any one of the flage can be chosen
to be the first one run up the mast. We can separate the set of all

possibilities into four groups, depending on which flag is on top,

a, orb, orc, ord, 4 x ? = total
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(This is a tentative step; we don't know at this point in the solution how
many po#sibilitigs there ave in each group, It is not even totally obvious
that the four groups will have the same number. )

Now each of the four groups can itseM'be g?@uped by the flag that

appears next to the top:

- ap-=

avm S g S A S ac‘,

T~ ad~

o wm-@:bu-

g da«"” .
Ao é; db-
T de-
Finally, we can see fthat each of these groups has exrctly two elements,
A i . ;
S/ b e abd
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4.x (3 x2) = 4 x 6 = total number of 3-flag signals.
If we let g = {a,b,e,d}, is this final set of ordered tri}ples the triple
crose productis 8 x 8 = §? No, because elements m"};c::h as (a,b,a),
cartesian or cross-product,
{b, b, e), and (¢, c,c) of theAS x S x $,do not r»presem’ possible flag
signals. |
GROUPING GROUPS

It is mteresting to cornpare the technique used in buzldzing trees wnth

that used earlier in findiag a volume, In building the tree, we started
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E thinking about the set of all possibilities by noting that the whole set

| can be broken up inte four groups, although the exact nature of the groups

was a bit foggy. We hoped to find the other factor in 4 x ? = total .,

In turn, we found a partial answer to this question in 4 x (3 = ?) = total,

Thus we produced a series of questions, in which each anawér depeﬂdo on

a satisfactory answer to the following question until the very last question,
In contrast, in the volume problem, we work at each step with only a

portion of the whole set of unit blocks, But at the and of each step, we

have a complete answer for some guestion, for example, at the end of the

second atep, we know that there were 2 x 4 units in the front stack,
Genarally speaking in grouping sitnations, it seems easier to pro&eed

ag in the volume problem, where each sub-gues.ion in fully answered before

the next is undertaken . However, without something concrete like the image

of a block made from unit cubes, it can be difficult to single out a sub-

portion of the set whose number ie sought which can be easily generalized

as a prototype (for example a stack ) for a set of equal groups.

EXERCISES
1. A man has three cans of paint, one read, one blue, one yellow. He
intendz to paint his son's tricycle one color and his wagon another using this
paint, How many different resulis are possible? Does your solution involve
the crosa‘product of two sets?
2., On Michigan passenger car license plates, a pair of letters are used

as the first two characters and they are followed by four digits, as for
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example in UM 1817 . How many different letter pairs can be used?

Can a cross product be used in the solution of this problem?

3. How many different 4 flag signals could be hoisted on a mast, if 4
different fiags are available?

5. Solve the flag problem of the section on trees,!starting by finding the
number of pmsibiiities in somasa definits subset of the set of all possibilities.
6. Solve the volume problem, starting by sub-dividing the whole block

of unit cubes into a group of groups,
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Unit 2, Whole numbexr divigion without a remainder

INTRODUCTION

Myigion i the inverse of multiplication, that is, a division
guestion is 2 multiplication statement in which the product and
one factor ave known, and the other factor is sought. Thus divi-
sion problems can be reduced to multiplication statements with
one factor unknown., Bince we have émpmsimd separate functions
for the two factors in multiplication, the first representing the nom-
ber of groups, the second the number in each group, we are lead to

two types of division problems,

MEASUREMENT DIVISION

Division problems in which the number in each group is known

; . |
and the number of groupe is sought are called measurement divi
sion probleme, How rnany groups of 3 marbles each can be make

from 12 marblesg?

? ¥ 3 = 12

1. The word "measurament' is suggested by the "measuring" of
the toial set in terras of sets whose cardinal number is the second
factor,




This problem can be sclved by direct appeal to boundary grouping,

by grouping three marbles at a time until all are encircled and

then counting the number of groups.

. o) - né:"""”“’"'—"
() 19| o
? X 3
0
o — o

The same general technique can be used on the number line by

12

tg.

counting 3 units in each bump, stopping at 12 units, and then

counting humps,

? X 3 = 12

10 12

This process of taking out groups of a given size to exhaust a total
set is a procsgs of repseated subtraction, and iz used in explaining

the division algorithm. Removing 3's from 12 one at time,

..3;' \

RN

6/ 4 3's are 12
Y

|

3
-3 %

we can count the number of 3's in 12,
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When we become more efficlent and remove more than one 3-
group at a time (we group 31s), we need a special column to

keep track of them:.

2 W 3 = 4269
Mu.\nr%}:ev*
3 12269 et
-3000 1000
1269
- 900 300
TG
- 300 100
69
. 69 23
0 1423 3'g  in 4269,

As an exarnple of a problem in which the measurement pattern
in less avident, consider the foliowing: How many different 3
card hands are possible from a deck of 7 different cards? This
problem is somewhat sirnilar to the flag problems given warlier,
if we were looking for possible 3 flag gignals from 7 differeant
flags, the answer wouldbe 7 ¥ 6 X 5; 7 possibilities for the
top flag, 6 for the next and 5 for the bottom flag (if this is not
clear, think of a tvee model), However, we cannot carry this
analysis directly over io the card problem., Naming the cards a,

b, c,d, e, £, and g, we see ibal while

N/

ig a different signal fromn
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/ / _ ig the same hand as

e,

Of these two different types of possibilities, the flag possibilities

are arrangements since arranging the flags differently gives a dif-

ferent possibility, and the card hands are called combinations

since a different combization of cards, without regard to their ar-
rangement, is required to have a different possibility,

Now, the following grouping statement is true:

The number of the number of | the total

arrangements of X combinations ~=  Inumber of :

each combination { the answer to] ~ |arrangements, !
the problem )

To show a few of ithe groups involved in this mulliplication,
NRRANEEMENTS HERIOE EmEirs  ARAAMSEMENTS

Of ONE HALO of ARNOTHER of a. THilD HARHD
abe abd abe ]
ach adb aeb ]
bac bad bae 1
bca bda bea |
cab dab _eab 1

cha dba eba and so forth, ‘ ]
Finding the nurnbher in each group, i.e. the number of arrangements
per coinbination, is a separate srrangement problem (like finding

how many different 3 flag signals can be made fromm 3 different '

flage ). In our problem, the answer is 6, Thus, the multiplication

gtatement above becomes the measurement division,




:
i
]
3
:
>
r

PARTITION DIVISION

6 x ? = 7 x (6 % 5)
arvangements embinations total
per arvangeiments,
combination

Gince Tx (b x5)=7x 30 = 210, the final result, the veplacement

for Y71, is 210 =6 = 35,

Divieion also is needed when we know the numbez in the product

and the number of groups. In this case the numbeyr in each group is

sought this is called "partition division', How many marbles in

each group if I divide (paxtition} 12 marbles into 3 equal groups?
3% 7 = 12

Children usually have more difficulty with partition division problems
than with measurement problems. One reason for this is that the divie
sion aigorithm is built up from the measursment model by removing
sets of known size from g total one at a tirne, The sclution to a parii-
tion division problem cannot be dirvectly perceived in this way. Ina
picture of 12 marbles, we cannoct draw a baundar}.r around one of the
groups if we know only that there must be 3 equal groups. To draw
the boundries, we need to know how many'th@r@ are in each group,
which, uafortunately, is the answer - we are trying to

get at. On the nwmber line, the situation is ths same;

?

A

.
——

Qs =~

o 2 4 6

10 .
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we must draw 3 equal humps without knowing how large to make
each one,

Altﬁough thinking about pictures illustrating partition division
dogs not lead directly to an answersr, o familiarity with the parti-
tioning pattern allows idemiiicétion of a problem as one requiring
division, Further, properties of numbers can be illustrated
through the partition model, For exarnple, the fact that 3 : 5

2

and ';' represent the same number can be illusirated through

partition division, On the number line, in trying to solve ?7X5 =3,
we search for the length of a segrnent having the property that 5

of them will be 3 units long.

3
AN
0 1 2 1
Will a segmaent of length -g~ units work? We try it and see (after
first marking off sach unit into «g— f8).
5 X g- = 3

/W N N NS TN e

5 ) 1 2 3 4

Thus a satment whose length is 3 of 5 equal sub-divisions of a
unit (the usual discription of -;-» is also the length of a seginent
5 of whichis 3 units (the answer to 5 X ? = 3),
THE INTERRELATION OF THE PARTITION AND MEASUREMENT MODELS

As it was possible to perceive the elements in a rectangulax

arrayv as grouved either into rows of columns, so it is possible to
P
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interprete division problems thyough either the partition or measure-
ment model, To illusirate this, let us solve what appears to be a
partition problem uging 2 measurement analysis, Problem: 12 rings
are to be separated into 3 equal grdupao How many rings are there
in each group? 3 x ? =12 We solve this partition problem by put-
ting the rings on three stakes,one ring ata time on each stake in

turn until all the rings have been distributed. A count then shows

4 riﬁgs per stake,

-

e <l
. -1 =]

On the other hand, the answer to the partition question, "how many

T e R HINSE SR R R L M

on each stake?, ' could have been found by the measurament device
of first making layers (groups) with three rings in each (one such

layer is the set of rings at the bottom of stakes). By measuring the

set of 12 rings using a 'layer' as a unit one could again deterinine
that there would be 4 lavers, ? x3«12, ? =4, The interrelation
of the two groupings, layers and stakes~full, is made in recognizing

that 4 layers {(groups) in the layer (measurement} grouping means 4

on each stake (in each group) in the atate (partition) grouping.

 As another example of a partition problem solved using the
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A

measurernent model, consider the following problem and explanation
given by a master teacher of arithmetic:

"A boy having 32 apples wished to divide them equally among

8 of his companions; how many must he give ,thema;giece?

If the boy were not accustomed to caleculating, he would probably
divide them, by giving one to each of the boys, and then another, and
so on, But to give thein one apiece wmuld take 8 apples, and one
apiece again would take 8 more, aﬁd 80 on, The question thenis,
to é'ee how many times 8 may be taken from 323 or, which is the
game thing, to see how many times 8 is contained in 32, Itis

contained four times, Ans. 4 each, " #

In analyzing the ring problem, our " ability to perceive the
rings in two differesnt but interrelated grouping patterns i facilitated
by the ease with whiéh we can physically or mentally move the rings
around, We have no pre-conception of any natural physical arrangement
of the ring‘s, For contrast, consider the partition problem of a man
who wants to cut a 12 foot board to make a2 bottomless 4 sided
sandbox. How long should each side be? One heeitates to use
a measurement explanation which involves, even mentally, cutting

ithe whole board into one foot lengths in order to make 4 stacks of 3

'boards each, one stack for each side of the sandbox,

#* Warren Colburn, Arithmetic upon the Inductive Method of Instrﬁction,
Boston: Jordan, Swift, and Wiley, 1845, pp. 142 .,
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What should be recognized in the ring argument, as in the row
and column groupings of a rectangular a,rfayg is that what we are
doing is verifying the commutative law for multiplication in a particular
context. GSiated in terms of a missing factor, this law says that, for
example, sqlving ? % 3 = 12 also produces the answe.,r to
30x ? = 12 ,» and vice versa, Thus the algorithm for division,
de'«'@lgped through measurement divmio;z,, also solves partition problems,
Thus the uifimate goal of achieving and u.ndersténding a general and
abstract perception of the nature of multiplication and division witﬁ
numbers, may be approached by uging different models, bearing in
mind and ultimately pointing out their relations to one anouther é.s

well as to the operations as generalized abstractions.

EXERCISES

1. Make up 6 situations reguiring division, 3 which are easily
analyzed using a measurement a.ppx;oach@d and 3 using a partition
approach,

2. Give an example of a division problem for which you w’nuld use

a number line explanation, and one for which you wouldn't,

3. Draw a number line picture for ? x 5 = 10 andfor 5 x ? = 10,
4, Draw a nﬁmber line picture and use it to explain why I and

8

7 -} 8 represents the same number ., Do the sasne for -,?:- and 8 — 7.

5. Have you taught children who had trouble with division problems ?

What do you think caused the difficuliy?
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6. A deck of 52 cards is dealt into 4 equal hands, How nhny
cards are in each hand? Explain the interrelation of partition
and measurement using this problem,

7. Hew many different poker hands are possible? (5 card han&l-
from a deck of 52 different cards,) How many of these are all
hearts? (5 card hands from 13 hearts.) How many different
poker hands have all 5 cards from the same suit?

8. The solution to the card problem at the end of the section onv.l
measurement division may seem a bit awkward, since it requires
the computation of a large number of arrangements in order to find
a smaller number of combinatiom%a Try a direct multiplication
grouping attack on this problem using a tree. What difficultics
do you encounter ?

9, Explain why the division of apples problem given by Wzrren
Colburn is @ partition problem, and why his solution of it is a
measurement soluticn, Using this problem, explain the inter-
relatioﬁ of the two models, i.e., explain how findi;ug the number

of groups in one situation gives the number in each group in another

related situation,




CONCEPTUAL MODELS IN TEACHING THE USES
OF NUMBER AND OCPERATION |

USOE Project

R. G. Clason

Unit 3. The Quantity model for ¥ractions; Multiplication

INTRODUCTION

There are various models for relating fractions to the
physical world. We could agree that % = ? means 4 X ? s 3,
and explain fractions through partition division. Or we 'o:onld agree
that % describes 2 relation hetween two zets, the relation that for

gach 3 elements in one set there are 4 in the other. However,

the most used model for fractions is the quantity model.

THE QUANTITY MODEL FOR FRACTIONG
The quantity model for fractions extends the idea of expressing

how many with 2 whole number to expressing how much with a

fraction. % can express how much pieo

mmnd 5;} i «A@
Iy 4

In expressing how much, a fraction involves 3 separate

, or how much

length

quantities and associated numbers. First a predetermined unit,
with respect to which the quantity is to be measured, corresponds
to the number 1. This seems almost automatic, particularly in

talking about fractions of apples or pies. But as situations become

«30=
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rnore involved, failure to keep track of the unit with respect
to which a quantity is deseribed can cause confusion. For

example, when we begiﬁ & problera by using % of the dots in
the accompanying diawing the "unit' is the set of all the dots

and %- describes the cifcled dots. However, when in the course

of the solution we use the fact that there are eiéht dots in the
diagram and six of tﬁem are civcled we are using two differerit
units at once, the entire set and the individual déts. Clearly %
doz28 not equal 6, although both numbera describe the circled
dots. If a student does not understand the root of this seeming

paradox, he may bave difficulty completing his solution.

The second quantity involved in & fraction, expressed through
the denominator, is the key to the extension of the number system
from whole nwnbers to fractions viewed as representing gquantities.

We cannot be very precise in measuring the length of a line

QMMMMW
/ a ‘t 3

using only standard units, so & secondary vnit or counter is introduced.

We cut the unit into, for example, 3 equal pieces and agree to use the

length of each as a counter and to describe its length with the new number,

W}

\ [ (] \ 3‘.\

.5-.._:1_ | 43
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The introduction of such counters is equivalent to agauming
numbers which ave thé answers to partition divisions of 1.

The fundamental property of % ig that 3 X }5 = 1, Abstractly,
this is expreséed by saying that we have created a multiplicative
inverse for eaéh counting numbeelr, i.e. a numbeér by which we can
multiply and get 1. From a quantity mwﬁel' standpoint -31- represents
one of the 3 equal parts into which a unit - has been divided. The

selection of a convenient counier to use with a particular quantity

is often an imporiant matter. If we cornbine two quantities whose

fraction representation are known and ask for a fraction describing
the result, tiw key to the solution is finding a common denominator,
d, for the two fractions. This is needed because }5 is a number
describing a quantity which can be used as a counter for both of
the original quantities and also for the combined quantity. |

The third and final number ﬁscea to desnzﬁ-ibe a quantit{f is

the numerator of the corresponding fraction, which tells how

many of the countetr are in the quantit ywhich we are describing.

7 Means that in the quantity there are 3 counters, ¢ of which

would make a unit.

MULTIPLICATION

in the realm of whole numbexrs, we have established a grouping

model to help us undevstand the relation of certain physical world
gituations to the mathematical operation of multiplication. It is

now reasonable to ask how this grouping model can be extended to.
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a pattern which wiil allow velating similaz phyéical situations
involving quantities to muliplication of fractions. Since the
number line represents nicely many kinda of quantity, let us
uze £ to represent some f:action;l groupings.
Making 5 :;nund trips to Grandma's izouse of -i- miles
‘ 3

each gives a total distance of 5 X i

] 3 4

if on the fifth trip, we don't come home, the total distance is

1 3
‘orm.ly 4 Xz .

/ ol J | %

N
4"2*}{

i W

= ? : 7 = a little rnore that 3-14» miles

Mrs. Quick has a recipe for goulash which calls for "g‘ cups
of minced onien. When shgpzrepams this dish for the whole
elan, including grand children, she makes 2% recipes,
which means ?.51? X -‘;:- cups of onion,
il W}? | TR WO T . A
/ a

w & '
232, X 3 = ? ; It appears that ? = l-g- o approximately
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but when she serves only the three members of the family
. PN . 1
who still live at home, she makes only % of a recipe

L]

> 3' 2 .
which means Z X g cups of onion.

-L 3
3V

a/“ kY
“*%h&f-mi—mm»
? & 1
2 X £ = 7 ; Itappearsthat ? a-% » approximately

In deawing number line pictures for multiplication of
fractions such as the ones above, it is convenient to mark

the number line with counters indicated by the sezond factor,

for example in showing the multiplication 13-52- X '?5 to mark

tha line into thirds of units. This allows making each hump
the right size, and even allows finding an exact answer from the

picture when the fivst factor iz a whole number.

1. The occurrence of the word "of' in a problem is a useful
clue that multiplication is involved. But the English language
wa.s not invenied to facilitate problem solving. "Of", like
take away", is a2 useful clue hut it is not entively dependable.
In the problems above, we want to see a comnon pattern for

2312- X % s ? and % %— = ? . ‘The word "qi” does not

2
always identify this pattern. Ik is common to say "= ofa

recipe’, but is not common to say "2?5 of a recipe' or even

"2% of recipes'. We :my merely "3% recipes't .
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Bince the first factor tells how many humps rather than how
many units, there is apparently liitle to be gained by breaking
the unite on the number line into counters suggested by its
denominator. This points up the fact that, when the first
factor i# not a whole number, numbexr ‘lina pictures such as
those above cannot ke depended upon to produce a precise

answer we can multiply using the usual computational mehod,

for example, %F%%l%-a% : and Z%X-g»sagxgvg%-g%g 1%.

In the following section we will reconcile this method with

quaatity model grouping.

EXERCISES

Draw number line pictures for the following.

1 3 7 1 o

1. Z':?. X B s 9? 2o 3 b @ s ?
2 2 2 1 |

3. 'fs" X 3-‘5- 2 9 } 4. 'g X .:lil = 7

5. 60% of $24. 60 is how much?

6. How far will you get in 3 hours and 20 minutes if you

are traveling 50 miles pexr hour? |

7. How much doss 2 lb. 4 oz. of steak cost at $1.2%5 a lb. ?

8. How many pounds in 3-% kilograms? (Use %-'lbso per kilogram.)
9. Write three problems involving fractional multiplicetion which

can be illustrated using the numbes line.
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USING AREA AND GROUPING MODELS FOR % X % = %%

The cennection beween grouping in the quantity rnodel and
the vsual 'top times top and bottem times 'bottom"' raethod of
computiing the product of two fractions can be seen in finding
the area of a rectangle. With this end in mind, let us find the

area of a % by "Z' rectangle.

K} -
B
/ 2.
A
A
0 A i A ‘.,, = -
0 / -
Y / 4
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In order to introduce a grouping pattern, we c¢an follow the
the suggestion given by % and )'z » the counte¥xs for the two

sides, and cut the rectangle into smaller equal rectangles, !z- by -lz .

Dl

Y 1 ;
¥ |
E |
/ ‘w wslemanr et | o wena | wowe D e ‘ ‘E
| :
’L l '
a 1 ”
| !
| .
[ ]

L
4

Teo use the small rectangles as counters, we note that there

arve 4 colurnns of 2 esach of thern in a unit of area (marked
1

with dazhes), so that each counter is %

of area. In the whole rectange , there ar¢ 5 columns of

units (square inches)

descyribes the total

3 each of these counteirs, so0 that «-22»}:%

aread.

i
¥
{
i3
4
3
4




=i~

@33

, 3 .« .
{n rultiplication such as B b % » the same analysis is poasible,
except that 2 square picture of 2 unit of area cannot be drawn ingide

a g by Z rectangle,. We can however extend the picture to include

a square unit so that we can fird the nunber of area counters in it.

] l
| )

' 1 | '
|

l

|

|

|

| —

/

Z
7

In this picture, there ave 5 X 4 avea counters in a unit of avea.

Theve are 3 X 7 avea counters in the 2 by 2 ractangle. Thus

] 4
3 :
the area of the rectangle is "@’%{‘E‘?I* s % sq. units.

EXERGISES
1. Draw the diagrams you would use in explaining with rectangles

why each of the following is true.

3 o 7 _ 3X7 3 ., 4  3%4
B 3 X5 = 3x% B 3 X35 3%

1., 1 _1x1
) 3 X7 "33
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2. Draw a rectangle picture for % X %- . To explain why
] .

Y - |
the "'cancellation" 3 X q works, show how counters of size

Nl

W can be used to find the area. Do the same for

9
-2-" X {(The counters may not be rectangular.)

w] &

3, Using a rectangular picture of -2- X -;- » @xplain why

the commutative law is true for muitiplication of fractions i. e.,

5 "
show that —« XK @« = « A «,

- v a2 S &
MODELS FOR = X = = iig . USING THE NUMBER LINE

The demonstration in the nreceeding rection that cur method
of multiplying fractions does what we expect to do in grouping
gituations depends rather heavily on the rectengulay diagrams.
The unmentioned shift from a uvnit of length to a unit of area
makes the explanation rather difficult to extend to non-ayes
grouvping. In order to ses how the argument can be made within
the frarmework of a more gz;nwauy applicable model, let us

5 3 5%3

investigate why -;; X 3 * TR

NS

1 ; i 5

, using the number line.

|
2




As suggested earlier, the main difficulty in seeing how
a precigse answer can be obtained by locking at this picture
5
is that ry describes "humps', not unitz, If we knevws how

many units % of & hump was, we could take .5 of this amount,

and have an answez. Using our experience with area to suggest

| 1 . '
counters of | vnits for the size of a counter, let

us attack this difficulty.

Coowd a,u&su'taaqu a.>§
4. 3 4
B / = ? o

We see that there are 12 of these counters in one hump.
In texms of counters, then, % of a hump is 2 segment of
length "?" guchthat 4 X ? = 12 counterz. Thisisa
whole numbes partition division of 2 set of counters, a
picture of which we can superimpose on our original

multiplication.
MMMM

—. S
' P e VAl | _i
§ / % }? )

Putting things back together, five z's ofa hump is 5X 3

counters or 15 countars.

/“""M
) ) IZNWW o i
| e i
/ & & &
5 3 5¥X3
Since there are 4 X 2 counters in a unit, -‘E Lz = i




Of ‘historical interest ia the following explanation of multiplication
of fractions:

rBuppose we are required to multiply 4/5 by 2/3.,

In this figure let the line AB be divided into five equal parts

at the points C, D, I, and F. Then AF is 4/5 of AR,

Thatis, 1/3 of1/5 =1/15 of the whole,

Then 1/3 of 4/5 must be 4 times as much, or 4/15,
Then 2/3 of 4/5 must be twice 4/15, or 8/15,
Therefore, to multiply a fraction by a fraction, find the

product of the numerators for the required numerator and the

protfuét of the deneminators for the required denominator,

EXERCISES

Use the number line to show that

7 2 _ 14 6 4 24
L5 X 35 = 1 2. v X 3w

% Ceorge Wentworth and David Eugene Smith, Compiete Arithmaetic,
Part I, Boston: Ginn and Company, 1909, pp. 102 .,
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IN
TEACHING THE USES OF NUMBER AND OPERATION
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MEASUREMENT DIVISION
A8 in the case of whole number divizion without a remainder, division
of fractions in the guantity model follows the measurement and partition
patterns. In the measurement, we start with a fraction for the size of
each group and a fraction for the total quantity to be divided, and look
for a fraction describing the number of groups,
Consider the measurement division  ? .x % ® 3 % . As in the -

whole number cags, we can use the known size of a group to construct &

picture by making one hump at a time,

N N TN e
!

A 3

? % z 2 % 5 ? = a little more than 3 humps.

Al

In ozcd@;r to keep things simple and to stress the grouping pattern, this
picture is sketched without doing any computation, Because of this, a
choice must be made b@mgen counters of lengih % units and % units
% , the counter needed to consiruct

a group, is used because the group size is used repeatedly, while the

to be shown on the number line,

42
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size of the total appears only once in the diagram,

The number line picture of a measurement division has a somewhat

0 R
L]

different appearance when the group is larger than the total, For ? x .-.;.., =

the picture can be drawn

VPRI s T [e— v aase -
hdanand N —

A
7z ! ya
?xl*‘!«-’ ?aabwt}meﬁfa
3 % 3 it 2 group

se that, even though the total does not include a whole group, a whole .

group is shown ,

Ag an exsample of the solution of 4 problem usging the measurement

divisicn pattern, let us change 5 % lbs, to kilograms, There are about

lé lbs, in one kilograrn, so using lbs, for units, we must find how many
groups of % \bs, each arein 5 % Ibs,

/1/-:"7,1:5‘1‘ tll"n.lllvhz.'/ ’tun/;‘ 1

s oy ;
£ J 2 7 i 5 2 ;
5 . ('
il 1. ’ 1 7 : ,

L S ? = almost 3 3 §roups {kilograms)

EXERCISES

Draw number line pictures for - tha following.

2 _ L 2 | 7 1
lo?xﬁi'as”é‘ 2(: ?xz"‘lla

i
&
-~
»®

wiee

%
wig

2, ?x%-‘a'




1
How many kilograms in 5 Ih ?

How many lbs, in -z}i kilogram 7

inches?

5 . » [ d »
5 em, is about equal to one in, How manycm, in &

How many inches in 5 %- cin ?
Work problems 5 and 6 using one Ib. equal about 5 kilograms,
: 11
2 .
£y in,

10, Mrs. Quick has fovgotten how many goulash recipes to make for the

3

and work problems 7 and 8 using one am. equals about

. 2
whole clan, but she remembers that she uses 1 5 cups of minced onion,

Her recipe book calls for % cups of onion, How many recipas should
she make?
11, Mr, Checkit gets 18.5 miles per gellon from his car on trips,

How rnany gallons of gas will be nsed to make a trip of 200 miles?

12, Write three problems that can be sclved using fractions and meagurement
division,
13, How is the number line picture for problem # 4 above similar to

the picture for ? x 2 = 7 7.

PARTITION DIVISION
Ag with partition division of whole numbers, sketching a number
line pictuve for a partition division for fractions repiesenting quantities

is. coraplicated because the pize in units of one hump is the unkaown, To

anow 3 %;- x 7P ow % we must construgt 3 % humps above a line
. 4 .
segment = units long.,
/

a

.Q\a/

Lx;‘

1

=
\




One cannot be very accurate in constructing these hurmps without some
computation, but in reasonably simple cases, a sketch can be made well

enough to illustrate the grouping pattern and to get an approximate fraction

for the number of units in each group,

Y

; N
’ Sy e
3 L F ! %
1 4 . ' 1 e
3 5 x 7 = 3 ? = a little less than 5 units in a group

Note tha t the counters used in this picture are % units, the counter for

the total, This is the only counter available which measures units; the 's

F3
1
in the 3 % describe groups, not units.
Since the question in partition division i# "how rmany units in one
group?", if the total does npt include at least one full hump on the number

line picture, it is desirable to include a whole hump in the picture anyway.

For example, in the division 2 % ? = 2,

4
- 7
4 .
f 4 .
2 | Ez
we want to sketch a hump so thet 3 of it is 2 units. Thus one hump rust
4
be bigger than & units,

‘,p""
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Gas mileage problems can be solved using the partition division model,
Mr. Checkit finds that his car went 105 miles on 5.5 gallons of gas, On

the average, how far did his car go on each gallon?

b ;5"(_) /00 ,
1;, 5,5 x ? = 105; ? = about 20 uniis (miles) for each group {(gallon).

In this diagram, each hump represenis a gallon's worth of distance.

EXERCISES

Draw a number line picture for each of the following, Re-write 1-4 as

divigion statements.

1 3 3 1
] " L ? a Ll . L g Gy
Loilg = r & txg =iz
'1&.
3 1 1 3
] 3. ) x ? 312 a4, pid le i
5 1 3 3 1 ‘
50 la'é" X z P | ? 60 Z X 12‘ - ?

7. Whatis the gas mileage for a car that goes 175 miles on 5.5 gallons

of gas?
8. Mrs., Quick has lost her cookbook. She wants to make one recipe of

goulash. In searching for the book, she comes acress a slip of paper on

1
which she has jotted down the various amounts of ingredienis needed for 2 =

2

recipes. If she nsaded 1 % cups of minced onion for 2% batches, how

much onion will she need for one recipe?
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|
2. % oz, of Essense of 1002 Lilacs costs $ 4,50, At this price how much t
would one oz, cost?

10, Write three problems that can be solved u=ing the partition model for

division of fractions,

COMMON DENOMINATOR METHOD OF COMPUTATION
Ag with multiplication of fractions, it is possible to reconcile com-

!
putational methods for dividing {ractions with the gquantity-grouping model, %
We will consider two ways of doing this, the common denominator method {
stemming from measurement division, and the invert and multiply method E
stemming from partition division, ,

When we first looked at measurement division of fractions on the

number line using the example ? x % s 2 %- , we failed to get

an exact answer from the number line picture because we did not want to

complicate the basic grouping pattern by introducing counters of both }5

]

and %E units . Let us now accept thiz complication and proceed by

choosing 2 new counter which will count segments of both thirds and fourths

of units. A counter that will work is one of length rEe Bx_ 3 or "'"”;z .
3 2 9 3 9 32
Pox oo z 3 becomes ? x 13 2 3 or ? x 13 i °




We can see from the picture that there are 3 humps and 5 counters

1 [} i -
{ VA units each) more, Butwe are angwering the question "how many

groups?! Since there are 9 counters in a group, the 5 counters

represent % of a group, and the answer iz 3 > groups,

9

In this demonstration, we first describe the total length and the
1
size of one group oin two ways: in units and in counters of 2 units,
With either description, we gee that the number of humps is the same,

As a result, we can phrase the question in terms of counters rather than

units, thus replacing the fractional division ? x -%— = -%%- with the

whole number division ? x 9 = 32. This leads to the common de-~

nominator method of dividing fractions:

Z—,é"im
3 ° 4

8 . 3 _
3 - 4 7
iz . 3
12 - 12

.9
32""‘9-§~§"

EXERCISES
Using the following problems rewrite each as a division problem, then draw
a number line picture to illustrate why the common denominator method

of division works,

1571 FLN
o
-5
#
B
!

H
e

2
l.,?x-:;x




INVERT AND MULTIPLY METHOD OF COMPUTATION

Using partition division, we can produce a different method for

4 :
dividing fractions. As an example, let us solve = x ? = 25"

F 1 2

In this division, we want to know how many units are in one group. We

know to begin with that 3 kumps representis the same quantity as é units,

z—-—-mu-

If we find L of the total quantity with respect to both descriptions, we

4
i 1 4 ) 1 5 )
find that 7 of 3 humps represents the same quantity as 7 £ 3 units,
hence, % hump represents the same quantity as is3 units, We can

superimpose a picture of this multiplication on our division picture:

. 5 i $ ) ] ]
74 ?

Since we are interested in the sizs of one hump, let us multiply both

descriptions of -I%' hump «2- unit) by 3% 3 x %— hump represents

the same quantity as 3 x

units,

4 x 2
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3x 5 _
Hence, one hump represents the same quantity as ins Thus one

3 ] = . 4
hump containsg %% units, so that starting with the division -g- Pl S

5% 5 5 3
4 ’ 9 > x b4 s . ) 3 ovi y
we find that ? = i OF ? 5 ® oz Thus our original problem
, 4 , 5 _ 5 ., 4 5 3
has proceeded from T % ? = 5 to ? o= 5 T 3 to ?oe oy ik

This is a particular example of the old algorithen : To divide one rational
number by a second invert the divisor (that ie take its reciprocal) and

multiply .

EXEBRCISES

>

Uzing the foilowing divisions, draw number line pictures to illustrate that

the invert and multiply method of dividing fractions works,

3 5 3 3
lo g bl s Ll = -
zx ? = 3 2 5 ® ? g

CONCLUSION

All applicati&na of mathematics involve the idea of associating
elements of cur non-mathematical physical or mental environment with
the elements of mathematical systems. Operations and problem solving
processzs are then carried out within the mathematical system and re-
interpreted back into the context of the original problem. The more
this stratigy ie understood the more people will understand both the
nature of mathematics and the processes by which it is used,

Somewhat in reverse, the building of an understanding of a mathe-

tical systern, in our case of the operations of multiplication and
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division, may be greatly aassisted by working with concrete and conceptual
models of the logical abstraction which is the mathematics. These units
have reviewed different models and waya in which they may be used to
discover or clarify the algarithma for and meaning of the operations of
m@ltiplication and division,

The possession of an understanding of some basic or primary
model as well as of a rule helps students to recall and to apply properly
the rule. Such a basic conceptual model is an important tool for the

- teacher who can direct an individual student or 2 class back to it either

to clarify a new problem or as a beginning for a series of thought-gteps
and problems which will lead to 2 new extension or process,

This basic refarence concepts zhould in time become familiar

generalizations such as the distributive law, the structure of a field,

br the notion of an inverse operation., However, they may well begin as
more concrete conceptual models such ag the "‘takeaaway" or 'part-
parts whole" views of subtraction and the idea of multiplication as
'number of groups times the number in a group is the total number"

28 discussed above, Such early coucrete conceptual models serve as

& basis for applying mathematics, for solving problemes, and for éxt@ndmg
our mathematical systern toward its ultima%ely more abstract and general
structures, *

Whenever the development and learning process comes to this

stage, however, the cycle should be completed by returning to concrete
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or special situations in which newly developed generali»ations or
algorithms can be perceived and used in another physical or conceptual
environment, Ultimately students should not have to talk or think of

"Thumps' to complete mathematical problems or applications, Such

models used eaxrly may help many studente to mmove towazrd an ultimately

deeper understanding.




